Using IDA Pro's tracing features. o patarescue 2005

The first debugger tutorial explained how to use traditional debugger commands in order to
debug a simple buggy C console program. This small tutorial will present another approach to
debug this application, by introducing the tracing functionalities of IDA's debugger.

The buggy program.

This program simply computes averages of a set of values (1, 2, 3, 4 and 5). Those values are stored
in two arrays: one containing 8 bit values, the other containing 32-bit values.

#include <stdio.h>

char char average (char array[], int count)
{

int i;

char average;

average = 0;

for (1 = 0; 1 < count; i++)
average += arrayl[i];

average /= count;

return average;

int int average (int arrayl[], int count)

{

int i, average;

average = 0;

for (1 = 0; 1 < count; 1i++)
average += arrayl[i];

average /= count;

return average;

void main (void) {
char chars/|]

{ 1,
int integers/(] {1, 2, 3, 4, 5 };

printf ("chars|[] - average = %d\n",
char average (chars, sizeof (chars)));
printf ("integers[] - average = %d\n",

int average (integers, sizeof (integers)));

IDA Pro Tracing Tutorial 1

Running this program gives us the following results:

chars|] - average = 3
integers[] - average 1054228

Obviously, the computed average on the integer array is wrong. Let's use IDA's debugger to
understand the origin of this error !

What is "tracing” ?

Tracing allows you to record various information during the execution of an application. We will
call this tracing information "trace events".

IDA memorizes such trace events in a "trace buffer". The size of this trace buffer can be either
limited (in this case, newer trace events will overwrite older ones) or unlimited (you may need a lot
of memory). In our case, as our application is rather small, we will specify an unlimited trace

buffer: select Tracing options in the Tracing submenu of the Debugger main menu, and set Trace
buffer size to 0.

Tracing options x|

Trace buffer size [-

Trace file

—Trace window
[T Mark consecutive haced events with zame IP

—Tracihg
¥ Trace over debugger segments

—Irngtructions racin

[~ Logif zame IF?—‘
—Funchionz racing
v Log return instructions

] Cancel Help

IDA offers different tracing mechanisms:

- Instructions tracing: IDA will record the execution of each instruction, and save the
resulting register values. By using this information, it can determine the execution flow
of the application, and detect registers which were modified by a given instruction. The
computer running the IDA Pro interface will be called the "debugger client".

-+ Functions tracing: IDA will record all function calls and function returns.

- Read/Write-Write-Execute tracing: IDA will record all access to a specified address.
Internally, Read/Write, Write and Execute tracings are nothing more than non-stopping
breakpoints.

For each tracing mechanism, related trace events will be added to the trace buffer. Trace events can
also be stored in a text file, if specified in the Tracing options dialog box.

IDA Pro Tracing Tutorial 2

Instructions and functions tracing.

To locate the bug in our code, we will record all our program's instructions, function calls, and
function returns. We don't want to record the execution of instructions preceding our main()
function, so we put the cursor on the main() function's start (at address 0x004011A1) and we press
the F4 key to start and run the application to this address. We then enable instructions and functions
tracing by pushing the appropriate icons in the Tracing toolbar. Finally, we continue the execution
until we reach the main() function's end (at address 0x0040120A). Note the Run to command is now
also available in both disassembly views and arrows panel dots popup menus.

E DA Yiew-EIP
EE-
* _text:B046811A2 mov ebp, esp
* .text:a84811A4 add esp, —1Ch
* .text:B8e4811A7 push esi
* .text:B884811A8 push edi
* .text:B884811A9 mov eax, dword ptr chars COMST
* _text:B884811AF mov dword ptr [ebp+chars], eax
* _text:6804811B2 mov al, chars_ COHST+4
* _text:804611B8 mov [ebp+chars+4], al
* _text:B04611BE mov esi, offset integers COHST
* .text:B884811CH lea edi, [ebp+integers]
* .text:084811C3 mov ecx, o
* _text:B884811C8 rep movsd
* .text:B884811CA push 5 ; count
* .text:B@84811CC lea eax, [ebp+chars]
* _text:804011CF push eax ; drray
* _text:884681108 call char_average
* _text:884811D5 add esp, 8
*o.text:a84811D8 movsx edx, al
* .text:884811DE push edx
* .text:B884811DC push offset aCharsfAverageD ; format
* _text:B884811E1 call _printf
* _text:884811E6 add esp, 8
* _text:B046011E9 push 28 ; count
* _text:BO4B11EE lea ecx, [ebptintegers]
* _text:B884011EE push BCX ; drray
* .text:@B4811EF call int_average
* .text:0840811F4 add esp, 8
* _text:B884811F7 push eax
o o h offset alntegersAverag ; format
‘ Jurnp ko IR _printf
il et P esp, 8
T edi
esi
| . esp, ebp
i execution trace ebp
G.text:ﬂﬂhtﬂﬂm retn
.text:-00401208A main endp - |
<] | i

IDA Pro Tracing Tutorial 3

Backtracing.

IDA has now memorized the execution of our program. To view the resulting trace events, we click
on the Trace window button in the Tracing toolbar.

If we click on a trace event in the Trace window, IDA updates various information on the screen to
represent the state of the program when the trace event was recorded. the following items are
particularly interesting:

- IDA's titlebar: the Backtracing word indicates that information on the screen reflect
information from a previously recorded trace event.

- Trace event icons (in the first column of the Trace window): indicate the type of the
recorded trace event: instruction execution, function call, function return, ... For
example, we observe two different recorded trace events at the end of the printf()
function: one represents the instruction , the second represents the function return trace
event.

« Result column (in the Trace window): will contain specific information related to the
trace event: in the case of an instruction trace event, it will display registers which were
modified by the instruction. Note the IP register is never displayed, as it is usually
modified by all instructions.

- Register arrows (in the arrows panel of disassembly views): will reflect the value of the
register before the instruction was run.

- Registers windows: for instruction trace events, each registers window will display the
value of the registers before the instruction was run, and the latest modified register
values (which are logically the same as the ones in the Result column of the previous
instruction trace event).

EIDA - CA DA PRESENTATIONS' Tracing',bug.idb (bug.exe) - Backtracing ; — |EI|£|
File Edt Jump Search “iew Debugger Options Windows Help
i= o

> N (B0 D] 8 1 x| i)

D&, YiewESP | (2] 104 ViewEIP | Bl Thieads | # 2] Trace |
B Trace window] 4

Thread Addiess Mame Instruction I Fiesult |:|
; int print [;o

1 [- 1 pE -

“printf pro = DDDE 00403331 _te:-:t_prt+ pop : ESP=12FFRC
Ei:' 00002F4 00403332 _test:_printf+22
tee UOODOZF4 00401202 _textmain+61 add esp. 8 ESP=12FFE3

i3 000002F4 00401205 _testmainebd pop ed EDI=0 ESP=12FFRC

2

ieneral registers

E 1pa view-EIP

format= dwo
arg_4= byte

. {55 000002F4 0041206 _testmain+65 pop esi ESI=4040B8 ESP=12FF70
. push ebp 152 000002F4 00401207 _tetmaintER moy esp, ebp ESP=12FFBC
. Tg: g';g {30 000002F4 00401209 _testmain+Bd pop ebp EBP=12FFBS ESP=12FF30 TI
. push eax Line 4318 of 4324 +» General regi]
. EE;: : EAx [0000001F L, cF o
* mou edx, [ebp+format] EBi| 7FFDF000 Ly[debug 813 :7FFDF 068 F'FIE
. SR AL Ecx| 0mzFa18 Ly[stack[080882F4] - 8812FA18| |AF[0
. push offset unk_4OA6F O I R Stack(1: o
. push offset fputn EDi| 00000007 Ly ZFIE
: cgﬁl SUD—uEgsFE ESI | 00404144 L[data:aCharsfverageD SFlﬁ
a esp,
E pop EDB EDI [0012FF84 [Stack[seees2ra] :ee12FFss) [TF[0
{ - text 081483932 retn eBP foo1zrrec fu[stack[eseeszra]:se12rrsc | [IF [1]
rintf end —
=t 5 EsP § 0012FFsC s[stack[8eeee2Fa] - e12FFsc | [DF[0]
ettty EIP 00403932 _printfs22 aFfo
4 EFL [ooonozoz

IDA Pro Tracing Tutorial 4

Searching the trace buffer.

Remember the strange average value computed for integers ? It was 18259104 (0x1169CA0 in
hexadecimal). The Trace window's Search command in the Search menu should find at least one
trace event referencing this value. And indeed, if we start the search we find this value at the
int_average~+IFE address:

HE Trace window -0 x|
Edit Search
T.| Address | I ame | [natruction |:|

00401157 _texbint_average+1E idiv e

00401199 _testint_average+20 moy ebw, eax
Q0401198 _tesbint_average+22 moyv eax, ebx

00401190 _tesbint_average+24 pop esl ESI=404144 ESP=12FFb4
Q040119E _testint_average+25 pop ebw EBx=FFFDFOO0 ESP=12FF58
004011 9F et int AvEranet h = o -

00401 ADN _testint_average+27 ESP=12FFEN

O=H Ok O-+k 0=tk 0=k Ok Ok Ok Ok 0=k 0=k Ok

F GEGGEF BEE BEDT - GEE EEE BES BEY BEE GE{ GES

004011 ADR _textint_average+27 int_average returned o _text main+53
004011F4 ut
O04011F7 ff _texkrain+56 ESP=12FFE4
Q0401TTFE Y _textmain+hy puzh offzet alntegerstverag ... ESP=12FFE0
Q040T1FDR _testmain+bl cal _prntf ESP=12FFEC
iy 004011FD _test:main+ac cal _printf mair call _printf

W EN

Line 1864 of 4445

By observing the trace, let's try to understand how the application uses this buggy value:

at int_average+IE : we found an "idiv esi" instruction which results in EAX register containing the
buggy value.

at int_average+27: the int_average() function returns to its caller (the main() function), and the
buggy value is used as function return value (the average of our integers).

at main+5C : the buggy average (stored in the EAX register) is then printed on the screen using the
_printf() function.

This value represents the badly computed average.

IDA Pro Tracing Tutorial 5

The buggy loop.

Now, let's observe instructions run just before we reach the idiv instruction.

i Trace window

Edit Search

=10l x|

T.| Addres=

¥ E5F £EG HE0 B §E1 £EG SEL B RED BB RED GE RD LB G0

0040118C
00401138F
00401130
004011392
0040118c
0040118F
00401190
00401152
0040118C
00401138F
00401130
004011392
00401134
004011396
004011497

_tewbadd_integer
_texkint_average+16
_texkint_average+17
textint_awverage+13
_tewkadd_integer
_ltestint_average+16
_testint_average+17
teskint_average+19
_textada integer
_texkint_average+16
_texkint_average+17
textint_awverage+13
_texwkend_of_loop
_ltestint_awerage+10

...... werage+1E

Instruction

add ebw, [eds+eantd]
ihc eax

Cmp esi, ean

i ghort add_integer

add ehw, [ede+eand

i ead

Cmp esi, ea

ghort add_integer

CINp B3I, B8
i ghort add_integer
moy eak, eb

cdg

Efi| 15C43C87

EB | 15C43C87
ECx| om12FF70
EDX[00000000
s
EDI | 0012FFa4
EBP| 0012FF58
ESP| 0012FFS0
EIP | 00401197
EFL | 00000246

=101 x|

cFfo
FF[1
aF [0
zF[1
40
TF[o
IF [
DF[0

OF|0

EAS=TOLY ALY

Line 1864 of 4445

We can observe a small loop which adds integers to compute our average. The trace window
displays here the three latest iterations of this loop. If we look at this loop's exit condition, we see it
compares the ESI register to the EAX register. So what does contain the ESI register ? The registers
window answers our question and indicates ESI contains the 0x14 value (20 in decimal) at the end
of the loop. Don't we expect the loop to iterate 5 times, rather than 20?

IDA Pro Tracing Tutorial

6

The bug uncovered.

Let's now browse instructions preceding the buggy loop to understand where this strange ESI value

comes from.

HE Trace window =10 x|

Edit Search

T.| Address | [ame | |natruction A ezl |:|
0040711ES _texkmain+d4a ESP=12FFR4
O04011EE _tesbriain+da, ECx=12FF70
Q0401T1EE _testmain+4D puzh ecx : ESF=12FFE0
Q0401T1EF _textmain+4E cal int_average ESP=12FF&C
QO4011EF _textmain+4E cal int_average main call int_average
00401179 _testint_average [p
00401174 _textint_average+] mov ebp, exp EBP=12FF5&
Q04011 7C _textint_average+3 puzh eb ESP=12FF54 s
00401170 _testint_average+4 i E=1FFA

GE{ §EF EEY GEC EET GEE SEY GE(EY BEC GEY GRC GED GEE 4 GED GED BED GE)

O040T17E _lestint_average+5 mow [ebprcount] ESI=14

00401181 _testint_average+3 edx, [ebp+aray F7o

00401184 _testint_average+B wor ebx, ebx EBx=0PF=1 2F=1

Q0401186 _testint_awverage+D WOl eaw, eas Edx=0

00401188 _textint_average+F Cmp e, ean £F=0

00401184 _textint_average+11 jle zhort end_of_loop

0040118C _textadd_integer add ebw, [edu+eantd] EBx=1 PF=0

0040118F _testint_average+16 s eaw E =1

00401190 _testint_average+17 cmp e, ea

00401192 _testint_average+19 i@ short add_integer ;I
Line 1776 of 4445 4

Before the first loop iteration (starting at int_average+F), we directly see that ESI gets its value
from the count argument of our int_average() function. If we now look at how our int_average()
function gets called, with the help of IDA's PIT (Parameter Identification and Tracking) technology,
we easily locate the push 14h instruction, passing the erroneous count argument. Now, by looking
closer at our C source code, we better understand the error: we used the sizeof{) operator, which

returns the number of bytes in the array, rather than returning the number of items in this array !

As, for the chars array, the number of bytes was equal to the number of items, we didn't notice the

CITOor...

IDA Pro Tracing Tutorial

7

This tutorial is © DataRescue SA/NV 2005

Revision 1.1

DataRescue SA/NV

40 Bld Piercot

4000 Liege, Belgium

T: +32-4-3446510 F: +32-4-3446514

IDA Pro Tracing Tutorial

8

http://www.datarescue.com/

	Using IDA Pro's tracing features. © DataRescue 2005

