
Using IDA Pro's tracing features. © DataRescue 2005

The first debugger tutorial explained how to use traditional debugger commands in order to
debug a simple buggy C console program. This small tutorial will present another approach to
debug this application, by introducing the tracing functionalities of IDA's debugger.

The buggy program.

This program simply computes averages of a set of values (1, 2, 3, 4 and 5). Those values are stored
in two arrays: one containing 8 bit values, the other containing 32-bit values.

IDA Pro Tracing Tutorial 1

#include <stdio.h>

char char_average(char array[], int count)
{
 int i;
 char average;
 average = 0;
 for (i = 0; i < count; i++)
 average += array[i];
 average /= count;
 return average;
}

int int_average(int array[], int count)
{
 int i, average;
 average = 0;
 for (i = 0; i < count; i++)
 average += array[i];
 average /= count;
 return average;
}

void main(void) {
 char chars[] = { 1, 2, 3, 4, 5 };
 int integers[] = { 1, 2, 3, 4, 5 };
 printf("chars[] - average = %d\n",
 char_average(chars, sizeof(chars)));
 printf("integers[] - average = %d\n",
 int_average(integers, sizeof(integers)));
}

Running this program gives us the following results:

Obviously, the computed average on the integer array is wrong. Let's use IDA's debugger to
understand the origin of this error !

What is "tracing" ?

Tracing allows you to record various information during the execution of an application. We will
call this tracing information "trace events".

IDA memorizes such trace events in a "trace buffer". The size of this trace buffer can be either
limited (in this case, newer trace events will overwrite older ones) or unlimited (you may need a lot
of memory). In our case, as our application is rather small, we will specify an unlimited trace
buffer: select Tracing options in the Tracing submenu of the Debugger main menu, and set Trace
buffer size to 0.

IDA offers different tracing mechanisms:

• Instructions tracing: IDA will record the execution of each instruction, and save the
resulting register values. By using this information, it can determine the execution flow
of the application, and detect registers which were modified by a given instruction. The
computer running the IDA Pro interface will be called the "debugger client".

• Functions tracing: IDA will record all function calls and function returns.

• Read/Write-Write-Execute tracing: IDA will record all access to a specified address.
Internally, Read/Write, Write and Execute tracings are nothing more than non-stopping
breakpoints.

For each tracing mechanism, related trace events will be added to the trace buffer. Trace events can
also be stored in a text file, if specified in the Tracing options dialog box.

IDA Pro Tracing Tutorial 2

chars[] - average = 3
integers[] - average = 1054228

Instructions and functions tracing.

To locate the bug in our code, we will record all our program's instructions, function calls, and
function returns. We don't want to record the execution of instructions preceding our main()
function, so we put the cursor on the main() function's start (at address 0x004011A1) and we press
the F4 key to start and run the application to this address. We then enable instructions and functions
tracing by pushing the appropriate icons in the Tracing toolbar. Finally, we continue the execution
until we reach the main() function's end (at address 0x0040120A). Note the Run to command is now
also available in both disassembly views and arrows panel dots popup menus.

IDA Pro Tracing Tutorial 3

Backtracing.

IDA has now memorized the execution of our program. To view the resulting trace events, we click
on the Trace window button in the Tracing toolbar.

If we click on a trace event in the Trace window, IDA updates various information on the screen to
represent the state of the program when the trace event was recorded. the following items are
particularly interesting:

• IDA's titlebar: the Backtracing word indicates that information on the screen reflect
information from a previously recorded trace event.

• Trace event icons (in the first column of the Trace window): indicate the type of the
recorded trace event: instruction execution, function call, function return, ... For
example, we observe two different recorded trace events at the end of the _printf()
function: one represents the instruction , the second represents the function return trace
event.

• Result column (in the Trace window): will contain specific information related to the
trace event: in the case of an instruction trace event, it will display registers which were
modified by the instruction. Note the IP register is never displayed, as it is usually
modified by all instructions.

• Register arrows (in the arrows panel of disassembly views): will reflect the value of the
register before the instruction was run.

• Registers windows: for instruction trace events, each registers window will display the
value of the registers before the instruction was run, and the latest modified register
values (which are logically the same as the ones in the Result column of the previous
instruction trace event).

IDA Pro Tracing Tutorial 4

Searching the trace buffer.

Remember the strange average value computed for integers ? It was 18259104 (0x1169CA0 in
hexadecimal). The Trace window's Search command in the Search menu should find at least one
trace event referencing this value. And indeed, if we start the search we find this value at the
int_average+1E address:

By observing the trace, let's try to understand how the application uses this buggy value:

at int_average+1E : we found an "idiv esi" instruction which results in EAX register containing the
buggy value.

at int_average+27: the int_average() function returns to its caller (the main() function), and the
buggy value is used as function return value (the average of our integers).

at main+5C : the buggy average (stored in the EAX register) is then printed on the screen using the
_printf() function.

This value represents the badly computed average.

IDA Pro Tracing Tutorial 5

The buggy loop.

Now, let's observe instructions run just before we reach the idiv instruction.

We can observe a small loop which adds integers to compute our average. The trace window
displays here the three latest iterations of this loop. If we look at this loop's exit condition, we see it
compares the ESI register to the EAX register. So what does contain the ESI register ? The registers
window answers our question and indicates ESI contains the 0x14 value (20 in decimal) at the end
of the loop. Don't we expect the loop to iterate 5 times, rather than 20?

IDA Pro Tracing Tutorial 6

The bug uncovered.

Let's now browse instructions preceding the buggy loop to understand where this strange ESI value
comes from.

Before the first loop iteration (starting at int_average+F), we directly see that ESI gets its value
from the count argument of our int_average() function. If we now look at how our int_average()
function gets called, with the help of IDA's PIT (Parameter Identification and Tracking) technology,
we easily locate the push 14h instruction, passing the erroneous count argument. Now, by looking
closer at our C source code, we better understand the error: we used the sizeof() operator, which
returns the number of bytes in the array, rather than returning the number of items in this array !

As, for the chars array, the number of bytes was equal to the number of items, we didn't notice the
error...

IDA Pro Tracing Tutorial 7

This tutorial is © DataRescue SA/NV 2005

Revision 1.1

DataRescue SA/NV

40 Bld Piercot

4000 Liège, Belgium

T: +32-4-3446510 F: +32-4-3446514

IDA Pro Tracing Tutorial 8

http://www.datarescue.com/

	Using IDA Pro's tracing features. © DataRescue 2005

